Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Christopher Glidewell, ${ }^{\text {a* }}$ John N.

 Low ${ }^{\text {b }}$ and James L. Wardell ${ }^{\text {c }}$${ }^{\text {a }}$ School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, ${ }^{\mathbf{b}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and ${ }^{\text {c Instituto de Química, Departamento de }}$ Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.026$
$w R$ factor $=0.054$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Nitrobenzaldehyde 2-iodobenzoylhydrazone

Molecules of the title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{IN}_{3} \mathrm{O}_{3}$, are linked into sheets by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Received 1 July 2005 Accepted 5 July 2005 Online 9 July 2005

Comment

The title compound, (I), was prepared as part of our study of the supramolecular arrangements of imine and amido compounds.

(I)

In the molecules of (I) (Fig. 1), the bond distances (Table 1) in the acyclic acylhydrazone fragment $\mathrm{C} 11-\mathrm{C} 21$ are all standard (Allen et al., 1987), and there is no evidence for any bond fixation within the aryl rings. Hence, the conventional representation (I) is entirely appropriate. This central spacer unit is nearly planar, as shown by the key torsional angles, with a trans planar $\mathrm{H}-\mathrm{N}-\mathrm{C}=\mathrm{O}$ fragment, as expected, and an E configuration at the $\mathrm{C} 1=\mathrm{N} 1$ bond. However, the aryl rings are both twisted out of this plane, making dihedral angles of 38.9 (2) and $43.3(2)^{\circ}$, while the nitro group is twisted out of the plane of the adjacent aryl ring by 33.7 (2) ${ }^{\circ}$. Within the spacer unit C11-C21, the intrachain bond angles are all less than 120°.

The molecules of (I) are linked into sheets by one N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, one of which utilizes the carbonyl O atom as acceptor, while the other utilizes a nitro O atom. Hydrazone atom N2 and

Figure 1
The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Part of the crystal structure of compound (I), showing the formation of a $C(4) C(6)\left[R_{2}^{1}(6)\right]$ chain of rings along [010]. For the sake of clarity, the H atoms on the aryl rings have been omitted. Atoms marked with an asterisk $(*)$ or a hash (\#) are at the symmetry positions $(x,-1+y, z)$ and $(x, 1+y, z)$, respectively.
methine atom C 1 in the molecule at (x, y, z) both act as hydrogen-bond donors to carbonyl atom O 2 in the molecule at $(x,-1+y, z)$, thus generating by translation a $C(4) C(6)\left[R_{2}^{1}(6)\right]$ chain of rings (Bernstein et al., 1995) running parallel to the [010] direction (Fig. 2). It may be noted here that analogous $C(4)$ motifs are rather common in both carboxamides and sulfonamides.

In addition, aryl atom C26 in the molecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O 22 in the molecule at $\left(1-x,-y,-\frac{1}{2}+z\right)$, thereby forming a $C(11)$ chain, generated by the 2_{1} screw axis along $\left(\frac{1}{2}, 0, z\right)$ and running parallel to the [001] direction (Fig. 3). The combination of the simple [001] chains and the [010] chains of rings then generates a complex (100) sheet (Fig. 4). This sheet lies in the domain $0.21<x<$ 0.79 and a second such sheet, related to the first by the action of the glide planes, lies in the domain $0.71<x<1.29$. However, there are no direction-specific interactions between adjacent sheets: in particular, $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds, aromatic $\pi-\pi$ stacking interactions, and iodo-nitro interactions are all absent.

Experimental

The title compound was prepared by reaction of 2-nitrobenzaldehyde hydrazone with 2-iodobenzoyl chloride. A solution containg 2 mmol of each reactant in 1,2-dichloroethane (20 ml) was heated under reflux for 1 h ; the mixture was cooled and the solvent was removed under reduced pressure. The solid residue was crystallized initially from ethanol, and crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a solution in ethanol and 2propanol [1/1 (v/v), m.p. $>520 \mathrm{~K}]$. IR (KBr disk): $1680 \mathrm{~cm}^{-1}$.

Figure 3
Part of the crystal structure of compound (I), showing the formation of a $C(11)$ chain along [001]. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (\#) or an ampersand (\&) are at the symmetry positions ($1-x$, $\left.-y,-\frac{1}{2}+z\right),\left(1-x,-y, \frac{1}{2}+z\right)$ and $(x, y, 1+z)$, respectively.

Figure 4
Stereoview of part of the crystal structure of compound (I), showing the formation of a (100) sheet. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Crystal data

[^0][^1]
Data collection

Bruker-Nonius KappaCCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.564, T_{\text {max }}=0.893$
12100 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.054$
$S=1.05$
2783 reflections
190 parameters
H -atom parameters constrained

2783 independent reflections 2579 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-27 \rightarrow 25$
$k=-6 \rightarrow 6$
$l=-16 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0068 P)^{2}\right. \\
& +2.6684 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.62 \mathrm{e}^{\mathrm{A}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1119 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.01 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},^{\circ}$).

$\mathrm{C} 11-\mathrm{C} 1$	$1.476(5)$	$\mathrm{C} 2-\mathrm{O} 2$	$1.233(5)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.286(5)$	$\mathrm{C} 2-\mathrm{C} 21$	$1.482(5)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.396(5)$	$\mathrm{C} 22-\mathrm{I} 22$	$2.107(4)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.358(6)$		
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{N} 1$	$118.3(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{O} 2$	$123.5(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$113.2(3)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 21$	$122.2(4)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2$	$119.1(4)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 21$	$114.2(3)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 1-\mathrm{N} 1$	$-151.3(4)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 21$	$176.2(3)$
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$-175.4(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 21-\mathrm{C} 22$	$138.2(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2$	$-174.4(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 12-\mathrm{O} 11$	$18.6(5)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{2}$	0.88	1.98	$2.820(5)$	159
$\mathrm{C} 1-\mathrm{H} 1 \cdots 2^{\mathrm{i}}$	0.95	2.27	$3.082(5)$	142
C26-H26 \cdots O22 ${ }^{\text {ii }}$	0.95	2.39	$3.169(6)$	139
Symmetry codes: (i) $x, y-1, z ;$ (ii) $-x+1,-y, z-\frac{1}{2}$.				

All H atoms were located in difference maps and subsequently treated as riding atoms, with distances $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.88 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, N)$. The correct orientation of the structure with respect to the polar-axis direction c (Jones, 1986) was established using the Flack (1983) parameter.

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jones, P. G. (1986). Acta Cryst. A42, 57.
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{IN}_{3} \mathrm{O}_{3}$
 $M_{r}=395.15$
 Orthorhombic, $P_{\infty} c a 2_{1}$
 $a=21.6122$ (8) \AA
 $b=5.0393$ (2) \AA
 $c=12.7868(5) \AA$
 $V=1392.62(9) \AA^{3}$
 $Z=4$
 $D_{x}=1.885 \mathrm{Mg} \mathrm{m}^{-3}$

[^1]: Mo $K \alpha$ radiation
 Cell parameters from 2783 reflections
 $\theta=3.7-27.5^{\circ}$
 $\mu=2.31 \mathrm{~mm}^{-1}$
 $T=120$ (2) K
 Plate, green
 $0.28 \times 0.08 \times 0.05 \mathrm{~mm}$

